The Langlands philosophy and representation theory

David Vogan

Massachusetts Institute of Technology

A Day of Mathematics in Taipei June 19, 2024

Outline

What Langlands can do for me

Introduction to number theory

Analytic number theory
Automorphic forms

Langlands conjectures, a bit more precisely
What's better than a representation of $\operatorname{Gal}(\mathbb{C} / \mathbb{R})$?

End of this talk is beginning of promised talk.

What happened to "Unitary dual"?

Announced title was, What's the unitary dual look like? Unfortunately, I often prepare talks at the last minute.
On this occasion the last minute coincided with a (highly divisible) wedding anniversary; so burying myself in my computer seemed like a poor idea.

We celebrated our tenth anniversary at the Arbeitstagung in Bonn.
My wife has not forgotten.
There was on my computer a set of slides on a (related!) topic, and so I have elected to use those.

Now the end of the talk can be a surprise to me as well as to you. I beg your forgiveness for this deviation from plan, and hope that you find something to enjoy.

Here's the punchline

$G L_{n}(\mathbb{R})$ is everybody's favorite reductive group.
Want to understand $\widehat{G L_{n}(\mathbb{R})}=$ set of irr repns.
Studied by Gelfand, Harish-Chandra et alia 1950s), as part of functional analysis. That was really hard.
Langlands (1960s) studied $\widehat{G L_{n}(\mathbb{R})}$ for number theory.
Langlands idea: $G \widehat{L_{n}(\mathbb{R})} \stackrel{\tilde{\sim}}{\sim} \rightarrow n$-diml reps of $\operatorname{Gal}(\overline{\mathbb{R}} / \mathbb{R})$.
That is, $G \widehat{L_{n}(\mathbb{R})} \stackrel{\approx ?}{\sim}\left\{n \times n\right.$ matrices $\left.J, J^{2}=I\right\} /($ conjugation).
FINALLY we have an algebra-friendly problem:
$G \widehat{L_{n}(\mathbb{R})} \stackrel{\approx}{\sim}\{$ decompositions $n=p+q\}$.
This is a bit too simple to be true. Plan today:

1. look at the origin of Langlands' idea;
2. how Langlands complicated the idea so it can be true.
3. how to complicate it even more so it can be even truer.

A one-minute introduction to number theory

Number theory $\leadsto \rightarrow$ solutions in \mathbb{Q} to polynomial eqns.
Can always find solutions by enlarging the field, so
Number theory $\leadsto \leadsto$ understanding finite extensions of \mathbb{Q}.

$$
\begin{aligned}
E & =(\text { separable }) \text { degree } n \text { extension of } k \\
& =n \text {-dimensional vector space over } k .
\end{aligned}
$$ $G L(E / k)=\{$ invertible k-linear $E \rightarrow E\} \simeq G L_{n}(k)$.

Multiplication in $E \leadsto E^{\times} \hookrightarrow G L_{k}(E)$ maximal abelian
Theorem.
separable extensions E_{j}

$$
\begin{gathered}
\sum_{j}\left[E_{j}: k\right]=n \quad \longleftrightarrow \quad A \subset G L_{n}(k) \\
A=E_{1}^{\times} \times \cdots \times E_{m}^{\times} .
\end{gathered}
$$

Number theory $\leadsto \rightarrow$ group theory for $G L_{n}(\mathbb{Q})$.

Another one-minute intro to number theory

Number theory $\leadsto \rightarrow$ solutions in \mathbb{Q} to polynomial eqns.
What's hard about that is that there's no analysis.
Embed $\mathbb{Q} \hookrightarrow \mathbb{R}$, study real solutions using analysis.
$x^{2}+4 y^{2}=-3$: no real solutions, so no rational solutions.
Embed $\mathbb{Q} \hookrightarrow \mathbb{Q}_{p}$, study p-adic solutions using analysis.
$x^{2}+4 y^{2}=135$: no solutions $(\bmod 4)$, so no rational solutions.
Adeles of \mathbb{Q} is (restricted) direct product $\mathbb{A}(\mathbb{Q})=\mathbb{R} \times \prod_{p} \mathbb{Q}_{p}$.
$\mathbb{A}(\mathbb{Q})=$ loc compact ring $\supset \mathbb{Q}=$ discrete cocompact subring. arithmetic on $\mathbb{Q} \leadsto$ analysis on compact $\mathbb{A}(\mathbb{Q}) / \mathbb{Q}$.

What's analysis look like on the adeles?

$$
\mathbb{A}(\mathbb{Q})=\mathbb{R} \times \Pi_{p} \mathbb{Q}_{p}
$$

$\mathbb{A}(\mathbb{Q})=$ loc compact ring $\supset \mathbb{Q}=$ discrete cocompact subring.
Like $\mathbb{R} \supset \mathbb{Z}$ but with more number-theoretic content.
Since $(\mathbb{A}(\mathbb{Q}),+)$ loc compact abelian, have a dual group

$$
\widehat{\mathbb{A}(\mathbb{Q})}={ }_{\text {def }}\{\chi: \mathbb{A}(\mathbb{Q}) \rightarrow U(1) \text { continuous, } \chi(a+b)=\chi(a) \chi(b)\}
$$

Haar measures d on \mathbb{A} and $d \chi$ on $\widehat{\mathbb{A}}$, and Fourier transform

$$
-: S(\mathbb{A}) \xrightarrow{\sim} \mathcal{S}(\widehat{\mathbb{A}}), \quad \widehat{F}(\chi)=\int_{\mathbb{A}} F(a) \chi(a) d a .
$$

Theorem. Fix nontrivial character $\chi_{1} \in \widehat{\mathbb{A}}$ trivial on \mathbb{Q}. For $\xi \in \mathbb{A}$ define $\chi_{\xi}(a)=\operatorname{def} \chi_{1}(\xi \cdot a)$.

1. $\xi \mapsto \chi_{\xi}$ is an isomorphism $\mathbb{A} \simeq \widehat{\mathbb{A}}$.
2. $\left\{\chi_{\xi} \mid \xi \in \mathbb{Q}\right\} \simeq \widehat{\mathbb{A} / \mathbb{Q}}$.

Nice basis of functions on $\mathbb{A}(\mathbb{Q}) / \mathbb{Q}$ indexed by \mathbb{Q}.

A one-minute intro to automorphic forms

Wasn't there a reductive group here somewhere?
separable extensions $E_{j} \longleftrightarrow$ nice max abelian

$$
\begin{gathered}
\sum_{j}\left[E_{j}: k\right]=n \quad \longleftrightarrow \quad A \subset G L_{n}(k) \\
A=E_{1}^{\times} \times \cdots \times E_{m}^{\times} .
\end{gathered}
$$

Number theory $\leadsto \leadsto$ group theory for $G L_{n}(\mathbb{Q})$.
To do analysis in this world, use locally compact group

$$
G L_{n}(\mathbb{A})=\prod_{V} G L_{n}\left(\mathbb{Q}_{V}\right)
$$

Diagonal embedding is

$$
G L_{n}(\mathbb{Q}) \hookrightarrow G L_{n}(\mathbb{A})
$$

discrete subgroup that's nearly cocompact.

$$
\text { arithm on } G L_{n}(\mathbb{Q}) \leadsto \text { analysis on nearly cpt }
$$

Automorphic forms $=$ nice fns on $G L_{n}(\mathbb{A}) / G L_{n}(\mathbb{Q})$.

Automorphic representations

$G L_{n}(\mathbb{A})=\prod_{v} G L_{n}\left(\mathbb{Q}_{v}\right)$ locally compact group.
Number theory $\leadsto \leadsto \mathcal{A}(\mathbb{Q})=$ nice fns on $G L_{n}(\mathbb{A}) / G L_{n}(\mathbb{Q})$.
$\mathcal{A}(\mathbb{Q})=$ vector space where $G L_{n}(\mathbb{A})$ acts: representation!
Automorphic rep $=$ irr rep of $G L_{n}(\mathbb{A})$ on $\mathcal{A}(\mathbb{Q})$.
Irr rep of product = tensor product of irr reps.
Any irr rep $\pi \in \widehat{G L_{n}(\mathbb{A})}$ is $\pi=\otimes_{v} \pi_{v}, \pi_{v} \in \widehat{G L_{n}\left(\mathbb{Q}_{v}\right)}$.
π automorphic $\Longleftrightarrow \otimes_{v} \pi_{v}$ has $G L_{n}(\mathbb{Q})$-fixed vector.
Analogous to "matching chars" in reciprocity laws of class field theory.

Langlands philosophy, take one

$\operatorname{Gal}\left(\mathbb{Q}_{v}\right) \hookrightarrow \operatorname{Gal}(\mathbb{Q})$ mod conjugacy.
Langlands' philosophy $\rightsquigarrow>$ conjectural maps:
$\left(n\right.$-diml reps of Gal $\left.\left(\mathbb{Q}_{v}\right)\right) \xrightarrow{\text { local }} \widehat{G L_{n}\left(\mathbb{Q}_{v}\right)}, \quad \sigma_{v} \mapsto \pi_{v}\left(\sigma_{v}\right)$.
$(n$-diml reps of $\operatorname{Gal}(\mathbb{Q})) \xrightarrow{\text { global }}\left(\right.$ automorphic reps of $\left.G L_{n}\right)$
σn-diml of $\operatorname{Gal}(\mathbb{Q}) \rightsquigarrow$ automorphic $\pi(\sigma)=\otimes_{V} \pi_{v}(\sigma)$.
Local/global compatibility: $\pi_{v}(\sigma)=\pi_{v}\left(\left.\sigma\right|_{\mathrm{Gal}}\left(\mathbb{Q}_{v}\right)\right)$.
Offers indirect "answer" to question of which local Galois group representations can be assembled to global ones...

Set $\left\{\sigma_{v}\right\}$ of n-diml reps tensor product of correof $\operatorname{Gal}\left(\mathbb{Q}_{v}\right)$ assemble to \Longleftrightarrow sponding $G L_{n}\left(\mathbb{Q}_{v}\right)$ reps n-diml rep σ of $\operatorname{Gal}(\mathbb{Q}) \quad$ has $G L_{n}(\mathbb{Q})$ fixed vector.
N.B.: the maps $\xrightarrow{\text { local }}$ and $\xrightarrow{\text { global }}$ aren't surjective!

What makes the Langlands conjectures true?

Number theory $\leadsto \rightarrow \mathcal{A}(\mathbb{Q})=$ nice fns on $G L_{n}(\mathbb{A}) / G L_{n}(\mathbb{Q})$
supports conjectural global correspondence

$$
\sigma n \text {-diml of } \operatorname{Gal}(\mathbb{Q}) \rightsquigarrow \text { automorphic } \pi(\sigma)=\otimes_{v} \pi_{v}(\sigma) \text {, }
$$

suggests image includes "most" automorphic reps.
Nature of embeddings $G L_{n}(\mathbb{Q}) \hookrightarrow G L_{n}\left(\mathbb{Q}_{v}\right)$ supports \{comps π_{v} of automorphic π \} \supset "most of" $G \widehat{L_{n}\left(\mathbb{Q}_{V}\right)}$.

Now a local correspondence

$$
\left.\left(n \text {-diml reps of } \operatorname{Gal}\left(\mathbb{Q}_{v}\right)\right) \xrightarrow{\text { local }} G \widehat{L_{n}\left(\mathbb{Q}_{v}\right.}\right), \quad \sigma_{v} \mapsto \pi_{v}\left(\sigma_{v}\right)
$$

needs to be defined, with image including "most" of $G \widehat{L_{n}\left(\mathbb{Q}_{v}\right)}$, for local/global compatibility to make sense.

What makes the Langlands conjectures false?

Galois grps are compact, so sets of repns are discrete.
Predicted sets of automorphic representations and $G L_{n}\left(\mathbb{Q}_{v}\right)$ representations are therefore discrete.
$G L_{n}\left(\mathbb{Q}_{v}\right), G L_{n}(\mathbb{A}) / G L_{n}(\mathbb{Q})$ are both noncompact (like $\left.\mathbb{R}\right)$...
...so have continuous spectra (like Fourier transform for \mathbb{R}).
Langlands understood this difficulty very well.
Class field theory (case of $G L_{1}$ for Langlands' conjectures) already sees this difficulty.

Langlands followed Andre Weil's resolution: replace Gal $\left(\mathbb{Q}_{v}\right)$ by closely related noncompact Weil group W_{v}.
Seems to work perfectly for nonarchimedean $\mathbb{Q}_{v} \ldots$
... but less well for \mathbb{R} and \mathbb{C}.

Where do automorphic forms come from?

Automorphic forms tied to L-functions: meromorphic functions, analytic behavior $\leadsto \rightarrow$ interesting number theory.

Fundamental example is Riemann zeta function.
Emil Artin gave a construction (for number fields) representation of Galois group \rightarrow L-function.
This is part of the basis of Langlands' conjectures:
Galois reps $\leadsto \rightarrow$ L-functions $\leftrightarrow \leadsto$ automorphic forms.
Another source of L-functions is varieties/number fields.
Connection with Artin L-functions looks like this:
variety $X / F \rightarrow$ cohomology $H^{*}(X) \rightarrow$ rep of $\mathrm{Gal}(F)$ on $H^{*}(X)$.
This is a good way to think, but the arrows don't really work...
...Artin uses cplx reps, so want cohom with cplx coeffs.
But $\operatorname{Gal}(F)$ does not act on such cohomology.

What does this suggest about Langlands?

$$
\text { aut form on } G L(n) \longleftrightarrow \begin{gathered}
n \text {-diml cohom space } \\
\text { of alg variety } / \mathbb{Q}
\end{gathered} \longleftrightarrow \begin{aligned}
& n \text {-diml rep } \\
& \text { of } \operatorname{Gal}(Q)
\end{aligned}
$$

Local version at \mathbb{R} is

$$
\text { rep of } G L_{n}(\mathbb{R}) \longleftrightarrow \begin{gathered}
n \text {-diml cohom space } \\
\text { of alg variety } / \mathbb{R}
\end{gathered} \longleftrightarrow \begin{gathered}
n \text {-diml rep } \\
\text { of } \operatorname{Gal}(\mathbb{R})
\end{gathered}
$$

In both settings, first problem is that red arrows don't work.
To address that, Langlands needed a structure on an n-diml cplx vector space V related to cohom of alg variety.

An integral Langlands parameter for $G L_{n}(\mathbb{R})$ is

1. complex vector space V of dimension n;
2. involution $y \in \operatorname{Aut}(V)$ of order (one or) two;
3. bigrading $\left\{V_{p, q} \mid p, q \in \mathbb{Z}\right\}$, such that $y\left(V_{p, q}\right)=V_{q, p}$.

This is close to Hodge structure on cohom of smooth X / \mathbb{R}.
Langlands proved local Langlands conjecture:
THM : irr reps of $G L_{n}(\mathbb{R}) \longleftrightarrow \begin{gathered}\text { equivalence classes } \\ \text { of Langlands params }\end{gathered}$.

Why wasn't that the last slide?

Recall that an integral Langlands parameter for $G L_{n}(\mathbb{R})$ is
(Adams-Barbasch-V 1992)

1. complex vector space V of dimension n;
2. involution $y \in \operatorname{Aut}(V)$ of order (one or) two;
3. bigrading $\left\{V_{p, q} \mid p, q \in \mathbb{Z}\right\}$, such that $y\left(V_{p, q}\right)=V_{q, p}$. and this is close to Hodge structure on cohom of smooth X / \mathbb{R}.

Two reasons to keep going:
aesthetic: non-smooth X lack such Hodge structure;
practical: (Langlands params $/ \mathbb{R}$) lacks interesting geometry.
An integral geometric parameter for $G L_{n}(\mathbb{R})$ is

1. complex vector space V of dimension n;
2. involution $y \in \operatorname{Aut}(V)$ of order (one or) two;
3. filtration $\left\{\cdots F_{p-1} V \subset F_{p} V \subset F_{p+1} V \cdots\right\}$
and this is in the spirit of the Hodge filtration on cohom of any X / \mathbb{R}.
Linear algebra exercise:

$$
\left(y,\left(V_{p . q}\right)\right) \mapsto\left(y, \sum_{p^{\prime}<p, q} V_{p^{\prime}, q}\right)
$$

is a bijection from equiv classes of integral Langlands params to equiv classes of geom params.

COROLLARY : irr reps of $G L_{n}(\mathbb{R}) \longleftrightarrow$
equivalence classes
of geometric params

What do you do with this?

$G L_{n}(\mathbb{R})$ reps correspond to integral geometric params:

1. complex vector space V of dimension n;
2. involution $y \in \operatorname{Aut}(V)$ of order (one or) two;
3. filtration $\left\{\cdots F_{p-1} V \subset F_{p} V \subset F_{p+1} V \cdots\right\}$

Equiv class of filtrations $\leftrightarrow \rightarrow$ collection of nonnegative integers

$$
m_{p}=\operatorname{dim}\left(F_{p} V / F_{p-1} V\right), \quad \sum m_{p}=n
$$

Set of filtrations $\leftrightarrow \rightarrow$ (complex projective) partial flag variety

$$
G L_{n}(\mathbb{C}) / P_{\left(m_{p}\right)} \quad\left(P_{\left(m_{p}\right)}=\text { parabolic subgroup }\right)
$$

Equiv class of involutions $\leadsto \rightarrow$ nonneg pairs $(a, b), a+b=n$. Set of involutions $\leadsto G L_{n}(\mathbb{C}) /\left(G L_{a}(\mathbb{C}) \times G L_{b}(\mathbb{C})\right)$.

$$
\begin{gathered}
\begin{array}{c}
\text { equiv classes of } \\
\text { integral geom params }
\end{array} \longleftrightarrow \begin{array}{c}
\text { orbits of } G L_{a} \times G L_{b} \text { on } \\
\text { flag variety } G L_{n} / P_{\left(m_{p}\right)}
\end{array} ~
\end{gathered}
$$

This is the beginning of detailed study of reps of $G L_{n}(\mathbb{R})$:

> intersection cohom of orbit closures \longleftrightarrow characters of irr reps.

Left side was computed by George Lusztig.

Footnotes

Here are some details that didn't fit on earlier slides.
How to remove qualifier integral from def of Langlands params: Langlands, "On the classification of irreducible representations of real algebraic groups," 1970.

How to define Langlands params for any reductive G : same.
How to define geometric params for any reductive G :
Adams-Barbasch-Vogan, The Langlands Classification and Irreducible Characters for Real Reductive Groups, 1992.

Intersection cohomology of symmetric subgroup orbit closures: Lusztig-V, "Singularities of closures of K-orbits on flag manifolds," 1983.

Computing unitary representations using geometric params: Adams-van Leeuwen-Trapa-Vogan, "Unitary representations of real reductive groups," 2020.
Computer implementation: du Cloux-van Leeuwen, atlas software, http://www.liegroups.org/software/.

